??机器视觉使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。目前,广泛应用于电子、汽车、机械等工业部门和医学领域。对于机器人视觉技术的设计,存在以下几个难点:
??一、打光的稳定性
??工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求很高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是软件的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再厉害的软件也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。当然通过硬件相机分辨率的提升也是提高精度,抗环境干扰的一种办法了。比如之前的相机对应物空间尺寸是1个像素10um,而通过提升分辨率后变成1个像素5um,精度近似可以认为提升1倍,对环境的干扰自然增强了。
??二、工件位置的不一致性
??一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先都是要先找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果机器视觉定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差。
三、标定
??一般在高精度测量时需要做以下几个标定:
1.光学畸变标定(如果您不是用的软件镜头,一般都必须标定);
2.投影畸变的标定,也就是因为安装位置误差使图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。
??不过目前的标定算法都是基于平面的标定,如果待测量的物理不是平面的,标定就会需要作一些特种算法来处理,通常的标定算法是解决不了的。
??此外有些标定,因为不方面使用标定板,也必须设计特殊的标定方法,因此标定不一定能通过软件中已有的标定算法全部解决。
??四、物体的运动速度
??如果被测量的物体不是静止的,而是在运动状态,那么一定要考虑运动模糊对图像精度(模糊像素=物体运动速度*相机曝光时间),这也不是软件能够解决的。
??五、软件的测量精度
??在机器视觉测量应用中软件的精度只能按照1/2—1/4个像素考虑,而不能向定位应用一样达到1/10-1/30个像素精度,因为测量应用中软件能够从图像上提取的特征点非常少。